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General Approach: Electrochemical CO2 Conversion
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General Approach: Electrochemical CO2 Conversion

Use carbon-free electrons to convert CO2 !
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Designing CO2 Electrocatalysts

• Large energy input or poor efficiency ... Wasted energy = $$$$!

• Large Product Distribution... Separation = $$$$!
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“Coinage” Metal Catalysts
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Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability 
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Too weak Too strong

“Just Right”

Typical materials contain a mixture of shapes, 
sizes and “colors”.  Hard to identify which 

“piece” is doing what. 

Sabatier Principle

Designing CO2 Electrocatalysts
Can we reduce Au content or tune product selectivity? 
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Design well-defined nanocatalysts to 
understand and eventually control chemistry

Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability 
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Sabatier Principle

Designing CO2 Electrocatalysts
Can we reduce Au content or tune product selectivity? 
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Previous Success with Ligand-Capped Nanocatalysts

Extremely active CO2 reduction catalyst

0.6 nm

Ni S

Ni6(SR)12 Nanocatalyst

Extremely active water oxidation catalyst

Atomic Level Computational 
Electrochemistry (DFT)

Au25(SR)18 Nanocluster

Ligands control catalyst structure and tune reactivity
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Ligand Capped Au/Cu Nanoparticles
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TEM @ BNL CFN

Strongly bound thiol ligands, narrow size distribution, controlled composition 
near infrared photoluminescence: Cu incorporation into NP

Kauffman et al. 2017, submitted for publication
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Cu L-edge X-ray Absorption Spectroscopy
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• NPs contain mostly Cu+ with minor Cu2+

• consistent with lab-based XPS and Auger

• Upshifted from bulk Cu-oxide
• Copper-sulfur interactions
• Confirmed with sulfur L-edge XAS

• Thiol ligands preserve unique Cu+ species
• Ligand-free Au/Cu NPs contain mostly Cu2+

Kauffman et al. 2017, submitted for publication Cu L-edge XAS @ SLAC/SSRL
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Structural Analysis using Hard X-ray Spectroscopy
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Small, thiol-capped NPs contain 

unique surface structures

Kauffman et al. 2017, submitted for publication Cu K-edge XAS @ LSU/CAMD
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CO2 Conversion Product Distributions
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Ligand Free Au/Cu NPs show drastically different products
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Long Term Performance

• 100% CO selectivity…no H2

• 100 ± 6% CO FE

• 911,000 CO site-1

• 22 ± 3 CO site-1 s-1

• 9 ± 1 mA cm-2
metal

 Mass transfer limitations 

 Reactor design

Electrode dried 
overnight in air

49% Cu NPs produced 4-8 times higher performance than 100% Au NPs

Kauffman et al. 2017, submitted for publication

Stable performance at -0.8V vs. RHE



15Model from Hakkinen,  J. Phys. Chem. Lett. 2015, 6, 515−520Kauffman et al. 2017, submitted for publication

Au144(SH)60 Au114Cu30(SH)60 Au90Cu54(SH)60

1.8 nm

Au S Cu H

Computational Electrochemistry
Why does copper improve performance?
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Computational Electrochemistry
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Kauffman et al. 2017, submitted for publication
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Au144(SH)59
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• Cu sites enhance CO2 reduction 
• Better stabilize *CO intermediate

• Inhibit *H formation

• Possible H2 increase at very high Cu content

*experimentally confirmed

• Ligand Free Au/Cu NPs show stronger intermediate binding
• Likely H2 and hydrocarbon production

*experimentally confirmed

Computational Electrochemistry

Kauffman et al. 2017, submitted for publication
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Conclusions and Moving Forward

1. Combining experiment and computation reveal atomic-level design considerations

2. Ligands allow us to “atomically engineering” the nanocatalyst surface structure 

3. Copper-thiol groups improve reaction rates and product selectivity compared with 
ligand-protected gold nanoparticles

4. Intentional ligand removal allowed particle growth, less efficient CO2 reduction, and 
wider product distribution due to stronger *CO and *H binding

5. Need to incorporation into realistic reactor architectures

We welcome any suggestions and/or collaborations!
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The End!

Questions or Comments?
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