Combining Experiment and Computation to Design CO₂ Conversion Nanocatalysts

Douglas R. Kauffman

08/23/2017

Solutions for Today | Options for Tomorrow

General Approach: Electrochemical CO₂ Conversion

Electrochemistry moves electrons

General Approach: Electrochemical CO₂ Conversion

Designing CO₂ Electrocatalysts

Reaction Coordinate

- Large energy input or poor efficiency ... Wasted energy = \$\$\$?
- Large Product Distribution... <u>Separation = \$\$\$</u>

ATIONAL

NOLOGY

"Coinage" Metal Catalysts NATIONAL RG TECHNOLOGY LABORATORY **Industrial Chemicals** Synthesis gas **CO**₂ $(CO + H_2)$ Gold Fuels **Polymers and Plastics** Water $H_2 + CO$ formic acid Purified \$\$\$ methane product C₂+ hydrocarbons alcohols Copper

Can we reduce Au content or tune product selectivity?

★ Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability **★**

Sabatier Principle

Adsorbate Binding Strength

Typical materials contain a mixture of shapes, sizes and "colors". Hard to identify which "piece" is doing what.

Can we reduce Au content or tune product selectivity?

★ Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability ★

Sabatier Principle

Adsorbate Binding Strength

Design well-defined nanocatalysts to understand and eventually *control* chemistry

Previous Success with Ligand-Capped Nanocatalysts

NATIONAL ENERGY TECHNOLOGY LABORATORY

Ligands control catalyst structure and tune reactivity

Ligand Capped Au/Cu Nanoparticles

Strongly bound thiol ligands, narrow size distribution, controlled composition near infrared photoluminescence: Cu incorporation into NP

ATIONAL

EC

HNOLOGY

- NPs contain mostly Cu⁺ with minor Cu²⁺
 - consistent with lab-based XPS and Auger

• Upshifted from bulk Cu-oxide

- Copper-sulfur interactions
- Confirmed with sulfur L-edge XAS

- Thiol ligands preserve unique Cu⁺ species
 - Ligand-free Au/Cu NPs contain mostly Cu²⁺

- **NE**NATIONAL ENERGY TECHNOLOGY LABORATORY

Small, thiol-capped NPs contain unique surface structures

Ligand "Shell" Oligomers

CO₂ Conversion Product Distributions

Quantify electrolysis charge vs. product formation

U.S. DEPARTMENT OF

Post-reaction analysis confirmed NP stability

Ligand Free Au/Cu NPs show drastically different products

Long Term Performance

NATIONAL ENERGY TECHNOLOGY LABORATORY

49% Cu NPs produced 4-8 times higher performance than 100% Au NPs

Stable performance at -0.8V vs. RHE

- 100% CO selectivity...no H₂
- 100 ± 6% CO FE
- 911,000 CO site⁻¹
- 22 ± 3 CO site⁻¹ s⁻¹
- $9 \pm 1 \text{ mA cm}^{-2}_{\text{metal}}$
- ★ Mass transfer limitations
- ★ Reactor design

Computational Electrochemistry

Why does copper improve performance?

Computational Electrochemistry

ATIONAL

- Cu sites enhance CO₂ reduction
 - Better stabilize *CO intermediate
 - Inhibit *H formation
 - Possible H₂ increase at very high Cu content
 - *experimentally confirmed

- Likely H₂ and hydrocarbon production
 - *experimentally confirmed

- 1. Combining experiment and computation reveal atomic-level design considerations
- 2. Ligands allow us to "atomically engineering" the nanocatalyst surface structure
- 3. Copper-thiol groups improve reaction rates and product selectivity compared with ligand-protected gold nanoparticles
- 4. Intentional ligand removal allowed particle growth, less efficient CO₂ reduction, and wider product distribution due to stronger *CO and *H binding
- 5. Need to incorporation into realistic reactor architectures

Acknowledgements

TL NATIONAL ENERGY TECHNOLOC LABORATOR

DFT

Dominic Alfonso (NETL) De Nyago Tafen (NETL / AECOM)

BROOKHAVEN

XAS

Yunyun Zhou (NETL / AECOM) Amitava Roy (LSU / CAMD) Junsik Lee (SSRL)

TEMCongjun Wang (NETL / AECOM)Houlin L. Xin (BNL / CFN)

Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Portions of this work were performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000.

Questions or Comments?

